Music in the brain

Music is ubiquitous across human cultures — as a source of affective and pleasurable experience, moving us both physically and emotionally — and learning to play music shapes both brain structure and brain function. Music processing in the brain — namely, the perception of melody, harmony and rhythm — has traditionally been studied as an auditory phenomenon using passive listening paradigms. However, when listening to music, we actively generate predictions about what is likely to happen next. This enactive aspect has led to a more comprehensive understanding of music processing involving brain structures implicated in action, emotion and learning. Here we review the cognitive neuroscience literature of music perception. We show that music perception, action, emotion and learning all rest on the human brain’s fundamental capacity for prediction — as formulated by the predictive coding of music model. This Review elucidates how this formulation of music perception and expertise in individuals can be extended to account for the dynamics and underlying brain mechanisms of collective music making. This in turn has important implications for human creativity as evinced by music improvisation. These recent advances shed new light on what makes music meaningful from a neuroscientific perspective.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

186,36 € per year

only 15,53 € per issue

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Universality, domain-specificity and development of psychological responses to music

Article 17 May 2023

Scaling behaviour in music and cortical dynamics interplay to mediate music listening pleasure

Article Open access 27 November 2019

An ALE meta-analytic review of top-down and bottom-up processing of music in the brain

Article Open access 21 October 2021

References

  1. Zatorre, R. J., Chen, J. L. & Penhune, V. B. When the brain plays music: auditory–motor interactions in music perception and production. Nat. Rev. Neurosci.8, 547–558 (2007). A seminal review of auditory–motor coupling in music. ArticleCASPubMedGoogle Scholar
  2. Koelsch, S. Toward a neural basis of music perception–a review and updated model. Front. Psychol.2, 110 (2011). ArticlePubMedPubMed CentralGoogle Scholar
  3. Maes, P. J., Leman, M., Palmer, C. & Wanderley, M. M. Action-based effects on music perception. Front. Psychol.4, 1008 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  4. Koelsch, S. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci.15, 170–180 (2014). In this review, the author shows how music engages phylogenetically old reward networks in the brain to evoke emotions, and not merely subjective feelings. ArticleCASPubMedGoogle Scholar
  5. Vuust, P. & Witek, M. A. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music. Front. Psychol.5, 1111 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  6. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci.11, 127–138 (2010). This review posits that several global brain theories may be unified by the free-energy principle. ArticleCASPubMedGoogle Scholar
  7. Koelsch, S., Vuust, P. & Friston, K. Predictive processes and the peculiar case of music. Trends Cogn. Sci.23, 63–77 (2019). This review focuses specifically on predictive coding in music. ArticlePubMedGoogle Scholar
  8. Meyer, L. Emotion and Meaning in Music (Univ. of Chicago Press, 1956).
  9. Lerdahl, F. & Jackendoff, R. A Generative Theory of Music (MIT Press, 1999).
  10. Huron, D. Sweet Anticipation (MIT Press, 2006). In this book, Huron draws on evolutionary theory and statistical learning to propose a general theory of musical expectation.
  11. Hansen, N. C. & Pearce, M. T. Predictive uncertainty in auditory sequence processing. Front. Psychol.https://doi.org/10.3389/fpsyg.2013.01008 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  12. Vuust, P., Brattico, E., Seppanen, M., Naatanen, R. & Tervaniemi, M. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm. Neuropsychologia50, 1432–1443 (2012). ArticlePubMedGoogle Scholar
  13. Altenmüller, E. O. How many music centers are in the brain? Ann. N. Y. Acad. Sci.930, 273–280 (2001). ArticlePubMedGoogle Scholar
  14. Monelle, R. Linguistics and Semiotics in Music (Harwood Academic Publishers, 1992).
  15. Rohrmeier, M. A. & Koelsch, S. Predictive information processing in music cognition. A critical review. Int. J. Psychophysiol.83, 164–175 (2012). ArticlePubMedGoogle Scholar
  16. Vuust, P., Dietz, M. J., Witek, M. & Kringelbach, M. L. Now you hear it: a predictive coding model for understanding rhythmic incongruity. Ann. N. Y. Acad. Sci.https://doi.org/10.1111/nyas.13622 (2018). ArticlePubMedGoogle Scholar
  17. Vuust, P., Ostergaard, L., Pallesen, K. J., Bailey, C. & Roepstorff, A. Predictive coding of music–brain responses to rhythmic incongruity. Cortex45, 80–92 (2009). ArticlePubMedGoogle Scholar
  18. Vuust, P. & Frith, C. Anticipation is the key to understanding music and the effects of music on emotion. Behav. Brain Res.31, 599–600 (2008). This is the foundation for the PCM model used in this Review. Google Scholar
  19. Garrido, M. I., Sahani, M. & Dolan, R. J. Outlier responses reflect sensitivity to statistical structure in the human brain. PLoS Comput. Biol.9, e1002999 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  20. Lumaca, M., Baggio, G., Brattico, E., Haumann, N. T. & Vuust, P. From random to regular: neural constraints on the emergence of isochronous rhythm during cultural transmission. Soc. Cogn. Affect. Neurosci.13, 877–888 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  21. Quiroga-Martinez, D. R. et al. Musical prediction error responses similarly reduced by predictive uncertainty in musicians and non-musicians. Eur. J. Neurosci.https://doi.org/10.1111/ejn.14667 (2019). ArticleGoogle Scholar
  22. Koelsch, S., Schröger, E. & Gunter, T. C. Music matters: preattentive musicality of the human brain. Psychophysiology39, 38–48 (2002). ArticlePubMedGoogle Scholar
  23. Koelsch, S., Schmidt, B.-h & Kansok, J. Effects of musical expertise on the early right anterior negativity: an event-related brain potential study. Psychophysiology39, 657–663 (2002). ArticlePubMedGoogle Scholar
  24. Lumaca, M., Dietz, M. J., Hansen, N. C., Quiroga-Martinez, D. R. & Vuust, P. Perceptual learning of tone patterns changes the effective connectivity between Heschl’s gyrus and planum temporale. Hum. Brain Mapp.42, 941–952 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  25. Lieder, F., Daunizeau, J., Garrido, M. I., Friston, K. J. & Stephan, K. E. Modelling trial-by-trial changes in the mismatch negativity. PLoS Comput. Biol.9, e1002911 (2013). ArticleCASPubMedPubMed CentralGoogle Scholar
  26. Wacongne, C., Changeux, J. P. & Dehaene, S. A neuronal model of predictive coding accounting for the mismatch negativity. J. Neurosci.32, 3665–3678 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  27. Kiebel, S. J., Garrido, M. I. & Friston, K. J. Dynamic causal modelling of evoked responses: the role of intrinsic connections. Neuroimage36, 332–345 (2007). ArticlePubMedGoogle Scholar
  28. Feldman, H. & Friston, K. J. Attention, uncertainty, and free-energy. Front. Hum. Neurosci.4, 215 (2010). ArticlePubMedPubMed CentralGoogle Scholar
  29. Cheung, V. K. M. et al. Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Curr. Biol.29, 4084–4092 e4084 (2019). This fMRI study ties uncertainty and surprise to musical pleasure. ArticleCASPubMedGoogle Scholar
  30. McDermott, J. H. & Oxenham, A. J. Music perception, pitch, and the auditory system. Curr. Opin. Neurobiol.18, 452–463 (2008). ArticleCASPubMedPubMed CentralGoogle Scholar
  31. Thoret, E., Caramiaux, B., Depalle, P. & McAdams, S. Learning metrics on spectrotemporal modulations reveals the perception of musical instrument timbre. Nat. Hum. Behav.5, 369–377 (2020). ArticlePubMedGoogle Scholar
  32. Siedenburg, K. & McAdams, S. Four distinctions for the auditory “wastebasket” of timbre. Front. Psychol.8, 1747 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  33. Bendor, D. & Wang, X. The neuronal representation of pitch in primate auditory cortex. Nature436, 1161–1165 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
  34. Zatorre, R. J. Pitch perception of complex tones and human temporal-lobe function. J. Acoustical Soc. Am.84, 566–572 (1988). ArticleCASGoogle Scholar
  35. Warren, J. D., Uppenkamp, S., Patterson, R. D. & Griffiths, T. D. Separating pitch chroma and pitch height in the human brain. Proc. Natl Acad. Sci. USA100, 10038–10042 (2003). Using fMRI data, this study shows that pitch chroma is represented anterior to the primary auditory cortex, and pitch height is represented posterior to the primary auditory cortex. ArticleCASPubMedPubMed CentralGoogle Scholar
  36. Rauschecker, J. P. & Scott, S. K. Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat. Neurosci.12, 718–724 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  37. Leaver, A. M., Van Lare, J., Zielinski, B., Halpern, A. R. & Rauschecker, J. P. Brain activation during anticipation of sound sequences. J. Neurosci.29, 2477–2485 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  38. Houde, J. F. & Chang, E. F. The cortical computations underlying feedback control in vocal production. Curr. Opin. Neurobiol.33, 174–181 (2015). ArticleCASPubMedPubMed CentralGoogle Scholar
  39. Lee, Y. S., Janata, P., Frost, C., Hanke, M. & Granger, R. Investigation of melodic contour processing in the brain using multivariate pattern-based fMRI. Neuroimage57, 293–300 (2011). ArticlePubMedGoogle Scholar
  40. Janata, P. et al. The cortical topography of tonal structures underlying Western music. Science298, 2167–2170 (2002). ArticleCASPubMedGoogle Scholar
  41. Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants. Science274, 1926–1928 (1996). ArticleCASPubMedGoogle Scholar
  42. Saffran, J. R., Johnson, E. K., Aslin, R. N. & Newport, E. L. Statistical learning of tone sequences by human infants and adults. Cognition70, 27–52 (1999). ArticleCASPubMedGoogle Scholar
  43. Krumhansl, C. L. Perceptual structures for tonal music. Music. Percept.1, 28–62 (1983). ArticleGoogle Scholar
  44. Margulis, E. H. A model of melodic expectation. Music. Percept.22, 663–714 (2005). ArticleGoogle Scholar
  45. Temperley, D. A probabilistic model of melody perception. Cogn. Sci.32, 418–444 (2008). ArticlePubMedGoogle Scholar
  46. Pearce, M. T. & Wiggins, G. A. Auditory expectation: the information dynamics of music perception and cognition. Top. Cogn. Sci.4, 625–652 (2012). ArticlePubMedGoogle Scholar
  47. Sears, D. R. W., Pearce, M. T., Caplin, W. E. & McAdams, S. Simulating melodic and harmonic expectations for tonal cadences using probabilistic models. J. N. Music. Res.47, 29–52 (2018). ArticleGoogle Scholar
  48. Näätänen, R., Gaillard, A. W. & Mäntysalo, S. Early selective-attention effect on evoked potential reinterpreted. Acta Psychol.42, 313–329 (1978). ArticleGoogle Scholar
  49. Näätänen, R., Paavilainen, P., Rinne, T. & Alho, K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin. Neurophysiol.118, 2544–2590 (2007). This classic review covers three decades of MMN research to understand auditory perception. ArticlePubMedGoogle Scholar
  50. Wallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C. & Vuust, P. The Musical Ear Test, a new reliable test for measuring musical competence. Learn. Individ. Differ.20, 188–196 (2010). ArticleGoogle Scholar
  51. Tervaniemi, M. et al. Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus. Eur. J. Neurosci.30, 1636–1642 (2009). ArticleCASPubMedGoogle Scholar
  52. Burunat, I. et al. The reliability of continuous brain responses during naturalistic listening to music. Neuroimage124, 224–231 (2016). ArticlePubMedGoogle Scholar
  53. Burunat, I. et al. Action in perception: prominent visuo-motor functional symmetry in musicians during music listening. PLoS ONE10, e0138238 (2015). ArticlePubMedPubMed CentralCASGoogle Scholar
  54. Alluri, V. et al. Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. Neuroimage59, 3677–3689 (2012). A free-listening fMRI study showing brain networks involved in perception of distinct acoustical features of music. ArticlePubMedGoogle Scholar
  55. Halpern, A. R. & Zatorre, R. J. When that tune runs through your head: a PET investigation of auditory imagery for familiar melodies. Cereb. Cortex9, 697–704 (1999). ArticleCASPubMedGoogle Scholar
  56. Herholz, S. C., Halpern, A. R. & Zatorre, R. J. Neuronal correlates of perception, imagery, and memory for familiar tunes. J. Cogn. Neurosci.24, 1382–1397 (2012). ArticlePubMedGoogle Scholar
  57. Pallesen, K. J. et al. Emotion processing of major, minor, and dissonant chords: a functional magnetic resonance imaging study. Ann. N. Y. Acad. Sci.1060, 450–453 (2005). ArticlePubMedGoogle Scholar
  58. McPherson, M. J. et al. Perceptual fusion of musical notes by native Amazonians suggests universal representations of musical intervals. Nat. Commun.11, 2786 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  59. Helmholtz H. L. F. On the Sensations of Tone as a Physiological Basis for the Theory of Music (Cambridge Univ. Press, 1954).
  60. Vassilakis, P. N. & Kendall, R. A. in Human Vision and Electronic Imaging XV. 75270O (International Society for Optics and Photonics, 2010).
  61. Plomp, R. & Levelt, W. J. M. Tonal consonance and critical bandwidth. J. Acoustical Soc. Am.38, 548–560 (1965). ArticleCASGoogle Scholar
  62. McDermott, J. H., Schultz, A. F., Undurraga, E. A. & Godoy, R. A. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature535, 547–550 (2016). An ethnomusicology study showing that consonance preference may be absent in people with minimal exposure to Western music. ArticleCASPubMedGoogle Scholar
  63. Mehr, S. A. et al. Universality and diversity in human song. Sciencehttps://doi.org/10.1126/science.aax0868 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  64. Patel, A. D., Gibson, E., Ratner, J., Besson, M. & Holcomb, P. J. Processing syntactic relations in language and music: an event-related potential study. J. Cogn. Neurosci.10, 717–733 (1998). This classic study compares responses to syntactic incongruities in both language and Western tonal music. ArticleCASPubMedGoogle Scholar
  65. Janata, P. The neural architecture of music-evoked autobiographical memories. Cereb. Cortex19, 2579–2594 (2009). ArticlePubMedPubMed CentralGoogle Scholar
  66. Maess, B., Koelsch, S., Gunter, T. C. & Friederici, A. D. Musical syntax is processed in Broca’s area: an MEG study. Nat. Neurosci.4, 540–545 (2001). ArticleCASPubMedGoogle Scholar
  67. Koelsch, S. et al. Differentiating ERAN and MMN: an ERP study. Neuroreport12, 1385–1389 (2001). Using EEG, the authors show that ERAN and MMN reflect different cognitive mechanisms. ArticleCASPubMedGoogle Scholar
  68. Loui, P., Grent-‘t-Jong, T., Torpey, D. & Woldorff, M. Effects of attention on the neural processing of harmonic syntax in Western music. Cogn. Brain Res.25, 678–687 (2005). ArticleGoogle Scholar
  69. Koelsch, S., Fritz, T., Schulze, K., Alsop, D. & Schlaug, G. Adults and children processing music: an fMRI study. Neuroimage25, 1068–1076 (2005). ArticlePubMedGoogle Scholar
  70. Tillmann, B., Janata, P. & Bharucha, J. J. Activation of the inferior frontal cortex in musical priming. Ann. N. Y. Acad. Sci.999, 209–211 (2003). ArticlePubMedGoogle Scholar
  71. Garza-Villarreal, E. A., Brattico, E., Leino, S., Ostergaard, L. & Vuust, P. Distinct neural responses to chord violations: a multiple source analysis study. Brain Res.1389, 103–114 (2011). ArticleCASPubMedGoogle Scholar
  72. Leino, S., Brattico, E., Tervaniemi, M. & Vuust, P. Representation of harmony rules in the human brain: further evidence from event-related potentials. Brain Res.1142, 169–177 (2007). ArticleCASPubMedGoogle Scholar
  73. Sammler, D. et al. Co-localizing linguistic and musical syntax with intracranial EEG. Neuroimage64, 134–146 (2013). ArticlePubMedGoogle Scholar
  74. Loui, P., Wessel, D. L. & Hudson Kam, C. L. Humans rapidly learn grammatical structure in a new musical scale. Music. Percept.27, 377–388 (2010). ArticlePubMedPubMed CentralGoogle Scholar
  75. Loui, P., Wu, E. H., Wessel, D. L. & Knight, R. T. A generalized mechanism for perception of pitch patterns. J. Neurosci.29, 454–459 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  76. Cheung, V. K. M., Meyer, L., Friederici, A. D. & Koelsch, S. The right inferior frontal gyrus processes nested non-local dependencies in music. Sci. Rep.8, 3822 (2018). ArticlePubMedPubMed CentralCASGoogle Scholar
  77. Haueisen, J. & Knosche, T. R. Involuntary motor activity in pianists evoked by music perception. J. Cogn. Neurosci.13, 786–792 (2001). ArticleCASPubMedGoogle Scholar
  78. Bangert, M. et al. Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage30, 917–926 (2006). ArticlePubMedGoogle Scholar
  79. Baumann, S. et al. A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res.1161, 65–78 (2007). ArticleCASPubMedGoogle Scholar
  80. Lahav, A., Saltzman, E. & Schlaug, G. Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J. Neurosci.27, 308–314 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  81. Bianco, R. et al. Neural networks for harmonic structure in music perception and action. Neuroimage142, 454–464 (2016). ArticleCASPubMedGoogle Scholar
  82. Eerola, T., Vuoskoski, J. K., Peltola, H.-R., Putkinen, V. & Schäfer, K. An integrative review of the enjoyment of sadness associated with music. Phys. Life Rev.25, 100–121 (2018). ArticlePubMedGoogle Scholar
  83. Huron, D. M. D. The harmonic minor scale provides an optimum way of reducing average melodic interval size, consistent with sad affect cues. Empir. Musicol. Rev.7, 15 (2012). Google Scholar
  84. Huron, D. A comparison of average pitch height and interval size in major-and minor-key themes: evidence consistent with affect-related pitch prosody. 3, 59-63 (2008).
  85. Juslin, P. N. & Laukka, P. Communication of emotions in vocal expression and music performance: different channels, same code? Psychol. Bull.129, 770 (2003). ArticlePubMedGoogle Scholar
  86. Fritz, T. et al. Universal recognition of three basic emotions in music. Curr. Biol.19, 573–576 (2009). ArticleCASPubMedGoogle Scholar
  87. London, J. Hearing in Time: Psychological Aspects of Musical Meter (Oxford Univ. Press, 2012).
  88. Honing, H. Without it no music: beat induction as a fundamental musical trait. Ann. N. Y. Acad. Sci.1252, 85–91 (2012). ArticlePubMedGoogle Scholar
  89. Hickok, G., Farahbod, H. & Saberi, K. The rhythm of perception: entrainment to acoustic rhythms induces subsequent perceptual oscillation. Psychol. Sci.26, 1006–1013 (2015). ArticlePubMedGoogle Scholar
  90. Yabe, H., Tervaniemi, M., Reinikainen, K. & Näätänen, R. Temporal window of integration revealed by MMN to sound omission. Neuroreport8, 1971–1974 (1997). ArticleCASPubMedGoogle Scholar
  91. Andreou, L.-V., Griffiths, T. D. & Chait, M. Sensitivity to the temporal structure of rapid sound sequences — an MEG study. Neuroimage110, 194–204 (2015). ArticlePubMedGoogle Scholar
  92. Jongsma, M. L., Meeuwissen, E., Vos, P. G. & Maes, R. Rhythm perception: speeding up or slowing down affects different subcomponents of the ERP P3 complex. Biol. Psychol.75, 219–228 (2007). ArticlePubMedGoogle Scholar
  93. Graber, E. & Fujioka, T. Endogenous expectations for sequence continuation after auditory beat accelerations and decelerations revealed by P3a and induced beta-band responses. Neuroscience413, 11–21 (2019). ArticleCASPubMedGoogle Scholar
  94. Brochard, R., Abecasis, D., Potter, D., Ragot, R. & Drake, C. The “ticktock” of our internal clock: direct brain evidence of subjective accents in isochronous sequences. Psychol. Sci.14, 362–366 (2003). ArticlePubMedGoogle Scholar
  95. Lerdahl, F. & Jackendoff, R. An overview of hierarchical structure in music. Music. Percept.1, 229–252 (1983). ArticleGoogle Scholar
  96. Large, E. W. & Kolen, J. F. Resonance and the perception of musical meter. Connect. Sci.6, 177–208 (1994). ArticleGoogle Scholar
  97. Large, E. W. & Jones, M. R. The dynamics of attending: how people track time-varying events. Psychol. Rev.106, 119–159 (1999). ArticleGoogle Scholar
  98. Cutietta, R. A. & Booth, G. D. The influence of metre, mode, interval type and contour in repeated melodic free-recall. Psychol. Music24, 222–236 (1996). ArticleGoogle Scholar
  99. Smith, K. C. & Cuddy, L. L. Effects of metric and harmonic rhythm on the detection of pitch alterations in melodic sequences. J. Exp. Psychol.15, 457–471 (1989). CASGoogle Scholar
  100. Palmer, C. & Krumhansl, C. L. Mental representations for musical meter. J. Exp. Psychol.16, 728–741 (1990). CASGoogle Scholar
  101. Einarson, K. M. & Trainor, L. J. Hearing the beat: young children’s perceptual sensitivity to beat alignment varies according to metric structure. Music. Percept.34, 56–70 (2016). ArticleGoogle Scholar
  102. Large, E. W., Herrera, J. A. & Velasco, M. J. Neural networks for beat perception in musical rhythm. Front. Syst. Neurosci.9, 159 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  103. Nozaradan, S., Peretz, I., Missal, M. & Mouraux, A. Tagging the neuronal entrainment to beat and meter. J. Neurosci.31, 10234–10240 (2011). ArticleCASPubMedPubMed CentralGoogle Scholar
  104. Nozaradan, S., Peretz, I. & Mouraux, A. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J. Neurosci.32, 17572–17581 (2012). ArticleCASPubMedPubMed CentralGoogle Scholar
  105. Nozaradan, S., Schonwiesner, M., Keller, P. E., Lenc, T. & Lehmann, A. Neural bases of rhythmic entrainment in humans: critical transformation between cortical and lower-level representations of auditory rhythm. Eur. J. Neurosci.47, 321–332 (2018). ArticlePubMedGoogle Scholar
  106. Lenc, T., Keller, P. E., Varlet, M. & Nozaradan, S. Neural and behavioral evidence for frequency-selective context effects in rhythm processing in humans. Cereb. Cortex Commun.https://doi.org/10.1093/texcom/tgaa037 (2020). ArticlePubMedPubMed CentralGoogle Scholar
  107. Jacoby, N. & McDermott, J. H. Integer ratio priors on musical rhythm revealed cross-culturally by iterated reproduction. Curr. Biol.27, 359–370 (2017). ArticleCASPubMedGoogle Scholar
  108. Hannon, E. E. & Trehub, S. E. Metrical categories in infancy and adulthood. Psychol. Sci.16, 48–55 (2005). ArticlePubMedGoogle Scholar
  109. Hannon, E. E. & Trehub, S. E. Tuning in to musical rhythms: infants learn more readily than adults. Proc. Natl Acad. Sci. USA102, 12639–12643 (2005). ArticleCASPubMedPubMed CentralGoogle Scholar
  110. Vuust, P. et al. To musicians, the message is in the meter pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians. Neuroimage24, 560–564 (2005). ArticlePubMedGoogle Scholar
  111. Grahn, J. A. & Brett, M. Rhythm and beat perception in motor areas of the brain. J. Cogn. Neurosci.19, 893–906 (2007). This fMRI study investigates participants listening to rhythms of varied complexity. ArticlePubMedGoogle Scholar
  112. Toiviainen, P., Burunat, I., Brattico, E., Vuust, P. & Alluri, V. The chronnectome of musical beat. Neuroimage216, 116191 (2019). ArticlePubMedGoogle Scholar
  113. Chen, J. L., Penhune, V. B. & Zatorre, R. J. Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training. J. Cogn. Neurosci.20, 226–239 (2008). ArticlePubMedGoogle Scholar
  114. Levitin, D. J., Grahn, J. A. & London, J. The psychology of music: rhythm and movement. Annu. Rev. Psychol.69, 51–75 (2018). ArticlePubMedGoogle Scholar
  115. Winkler, I., Haden, G. P., Ladinig, O., Sziller, I. & Honing, H. Newborn infants detect the beat in music. Proc. Natl Acad. Sci. USA106, 2468–2471 (2009). ArticleCASPubMedPubMed CentralGoogle Scholar
  116. Phillips-Silver, J. & Trainor, L. J. Feeling the beat: movement influences infant rhythm perception. Science308, 1430–1430 (2005). ArticleCASPubMedGoogle Scholar
  117. Cirelli, L. K., Trehub, S. E. & Trainor, L. J. Rhythm and melody as social signals for infants. Ann. N. Y. Acad. Sci.https://doi.org/10.1111/nyas.13580 (2018). ArticlePubMedGoogle Scholar
  118. Cirelli, L. K., Einarson, K. M. & Trainor, L. J. Interpersonal synchrony increases prosocial behavior in infants. Dev. Sci.17, 1003–1011 (2014). ArticlePubMedGoogle Scholar
  119. Repp, B. H. Sensorimotor synchronization: a review of the tapping literature. Psychon. Bull. Rev.12, 969–992 (2005). ArticlePubMedGoogle Scholar
  120. Repp, B. H. & Su, Y. H. Sensorimotor synchronization: a review of recent research (2006-2012). Psychon. Bull. Rev.20, 403–452 (2013). This review, and Repp (2005), succinctly covers the field of sensorimotor synchronization. ArticlePubMedGoogle Scholar
  121. Zarco, W., Merchant, H., Prado, L. & Mendez, J. C. Subsecond timing in primates: comparison of interval production between human subjects and rhesus monkeys. J. Neurophysiol.102, 3191–3202 (2009). ArticlePubMedPubMed CentralGoogle Scholar
  122. Honing, H., Bouwer, F. L., Prado, L. & Merchant, H. Rhesus monkeys (Macaca mulatta) sense isochrony in rhythm, but not the beat: additional support for the gradual audiomotor evolution hypothesis. Front. Neurosci.12, 475 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  123. Hattori, Y. & Tomonaga, M. Rhythmic swaying induced by sound in chimpanzees (Pan troglodytes). Proc. Natl Acad. Sci. USA117, 936–942 (2020). ArticleCASPubMedGoogle Scholar
  124. Danielsen, A. Presence and Pleasure. The Funk Grooves of James Brown and Parliament (Wesleyan Univ. Press, 2006).
  125. Madison, G., Gouyon, F., Ullen, F. & Hornstrom, K. Modeling the tendency for music to induce movement in humans: first correlations with low-level audio descriptors across music genres. J. Exp. Psychol. Hum. Percept. Perform.37, 1578–1594 (2011). ArticlePubMedGoogle Scholar
  126. Stupacher, J., Hove, M. J., Novembre, G., Schutz-Bosbach, S. & Keller, P. E. Musical groove modulates motor cortex excitability: a TMS investigation. Brain Cogn.82, 127–136 (2013). ArticlePubMedGoogle Scholar
  127. Janata, P., Tomic, S. T. & Haberman, J. M. Sensorimotor coupling in music and the psychology of the groove. J. Exp. Psychol.141, 54 (2012). Using a systematic approach, this multiple-studies article shows that the concept of groove can be widely understood as a pleasurable drive towards action. ArticleGoogle Scholar
  128. Witek, M. A. et al. A critical cross-cultural study of sensorimotor and groove responses to syncopation among Ghanaian and American university students and staff. Music. Percept.37, 278–297 (2020). ArticleGoogle Scholar
  129. Friston, K., Mattout, J. & Kilner, J. Action understanding and active inference. Biol. Cybern.104, 137–160 (2011). ArticlePubMedPubMed CentralGoogle Scholar
  130. Longuet-Higgins, H. C. & Lee, C. S. The rhythmic interpretation of monophonic music. Music. Percept.1, 18 (1984). ArticleGoogle Scholar
  131. Sioros, G., Miron, M., Davies, M., Gouyon, F. & Madison, G. Syncopation creates the sensation of groove in synthesized music examples. Front. Psychol.5, 1036 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  132. Witek, M. A., Clarke, E. F., Wallentin, M., Kringelbach, M. L. & Vuust, P. Syncopation, body-movement and pleasure in groove music. PLoS ONE9, e94446 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  133. Kowalewski, D. A., Kratzer, T. M. & Friedman, R. S. Social music: investigating the link between personal liking and perceived groove. Music. Percept.37, 339–346 (2020). ArticleGoogle Scholar
  134. Bowling, D. L., Ancochea, P. G., Hove, M. J. & Tecumseh Fitch, W. Pupillometry of groove: evidence for noradrenergic arousal in the link between music and movement. Front. Neurosci.13, 1039 (2019). ArticleGoogle Scholar
  135. Matthews, T. E., Witek, M. A. G., Heggli, O. A., Penhune, V. B. & Vuust, P. The sensation of groove is affected by the interaction of rhythmic and harmonic complexity. PLoS ONE14, e0204539 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  136. Matthews, T. E., Witek, M. A., Lund, T., Vuust, P. & Penhune, V. B. The sensation of groove engages motor and reward networks. Neuroimage214, 116768 (2020). This fMRI study shows that the sensation of groove engages both motor and reward networks in the brain. ArticlePubMedGoogle Scholar
  137. Vaquero, L., Ramos-Escobar, N., François, C., Penhune, V. & Rodríguez-Fornells, A. White-matter structural connectivity predicts short-term melody and rhythm learning in non-musicians. Neuroimage181, 252–262 (2018). ArticlePubMedGoogle Scholar
  138. Zatorre, R. J., Halpern, A. R., Perry, D. W., Meyer, E. & Evans, A. C. Hearing in the mind’s ear: a PET investigation of musical imagery and perception. J. Cogn. Neurosci.8, 29–46 (1996). ArticleCASPubMedGoogle Scholar
  139. Benadon, F. Meter isn’t everything: the case of a timeline-oriented Cuban polyrhythm. N. Ideas Psychol.56, 100735 (2020). ArticleGoogle Scholar
  140. London, J., Polak, R. & Jacoby, N. Rhythm histograms and musical meter: a corpus study of Malian percussion music. Psychon. Bull. Rev.24, 474–480 (2017). ArticlePubMedGoogle Scholar
  141. Huron, D. Is music an evolutionary adaptation? Ann. N. Y. Acad. Sci.930, 43–61 (2001). ArticleCASPubMedGoogle Scholar
  142. Koelsch, S. Towards a neural basis of music-evoked emotions. Trends Cogn. Sci.14, 131–137 (2010). ArticlePubMedGoogle Scholar
  143. Eerola, T. & Vuoskoski, J. K. A comparison of the discrete and dimensional models of emotion in music. Psychol. Music.39, 18–49 (2010). ArticleGoogle Scholar
  144. Lonsdale, A. J. & North, A. C. Why do we listen to music? A uses and gratifications analysis. Br. J. Psychol.102, 108–134 (2011). ArticlePubMedGoogle Scholar
  145. Juslin, P. N. & Laukka, P. Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J. N. Music. Res.33, 217–238 (2004). ArticleGoogle Scholar
  146. Huron, D. Why is sad music pleasurable? A possible role for prolactin. Music. Sci.15, 146–158 (2011). ArticleGoogle Scholar
  147. Brattico, E. et al. It’s sad but I like it: the neural dissociation between musical emotions and liking in experts and laypersons. Front. Hum. Neurosci.9, 676 (2015). PubMedGoogle Scholar
  148. Sachs, M. E., Damasio, A. & Habibi, A. Unique personality profiles predict when and why sad music is enjoyed. Psychol. Musichttps://doi.org/10.1177/0305735620932660 (2020). ArticleGoogle Scholar
  149. Sachs, M. E., Habibi, A., Damasio, A. & Kaplan, J. T. Dynamic intersubject neural synchronization reflects affective responses to sad music. Neuroimage218, 116512 (2020). ArticlePubMedGoogle Scholar
  150. Juslin, P. N. & Vastfjall, D. Emotional responses to music: the need to consider underlying mechanisms. Behav. Brain Sci.31, 559–575 (2008). Using a novel theoretical framework, the authors propose that the mechanisms that evoke emotions from music are not unique to music. ArticlePubMedGoogle Scholar
  151. Rickard, N. S. Intense emotional responses to music: a test of the physiological arousal hypothesis. Psychol. Music.32, 371–388 (2004). ArticleGoogle Scholar
  152. Cowen, A. S., Fang, X., Sauter, D. & Keltner, D. What music makes us feel: at least 13 dimensions organize subjective experiences associated with music across different cultures. Proc. Natl Acad. Sci. USA117, 1924–1934 (2020). ArticleCASPubMedPubMed CentralGoogle Scholar
  153. Argstatter, H. Perception of basic emotions in music: culture-specific or multicultural? Psychol. Music.44, 674–690 (2016). ArticleGoogle Scholar
  154. Stevens, C. J. Music perception and cognition: a review of recent cross-cultural research. Top. Cogn. Sci.4, 653–667 (2012). ArticlePubMedGoogle Scholar
  155. Pearce, M. Cultural distance: a computational approach to exploring cultural influences on music cognition. in Oxford Handbook of Music and the Brain Vol. 31 (Oxford Univ. Press, 2018).
  156. van der Weij, B., Pearce, M. T. & Honing, H. A probabilistic model of meter perception: simulating enculturation. Front. Psychol.8, 824 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  157. Kringelbach, M. L. & Berridge, K. C. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn. Sci.13, 479–487 (2009). ArticlePubMedPubMed CentralGoogle Scholar
  158. Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA98, 11818–11823 (2001). This seminal positron emission tomography study shows that the experience of musical chills correlates with activity in the reward system. ArticleCASPubMedPubMed CentralGoogle Scholar
  159. Salimpoor, V. N. & Zatorre, R. J. Complex cognitive functions underlie aesthetic emotions: comment on “From everyday emotions to aesthetic emotions: towards a unified theory of musical emotions” by Patrik N. Juslin. Phys. Life Rev.10, 279–280 (2013). ArticlePubMedGoogle Scholar
  160. Salimpoor, V. N. et al. Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science340, 216–219 (2013). ArticleCASPubMedGoogle Scholar
  161. Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A. & Zatorre, R. J. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci.14, 257–262 (2011). ArticleCASPubMedGoogle Scholar
  162. Salimpoor, V. N., Benovoy, M., Longo, G., Cooperstock, J. R. & Zatorre, R. J. The rewarding aspects of music listening are related to degree of emotional arousal. PLoS ONE4, e7487 (2009). ArticlePubMedPubMed CentralCASGoogle Scholar
  163. Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A. & Marco-Pallares, J. Dissociation between musical and monetary reward responses in specific musical anhedonia. Curr. Biol.24, 699–704 (2014). ArticleCASPubMedGoogle Scholar
  164. Martinez-Molina, N., Mas-Herrero, E., Rodriguez-Fornells, A., Zatorre, R. J. & Marco-Pallares, J. Neural correlates of specific musical anhedonia. Proc. Natl Acad. Sci. USA113, E7337–E7345 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  165. Gebauer, L. K., M., L. & Vuust, P. Musical pleasure cycles: the role of anticipation and dopamine. Psychomusicology22, 16 (2012). ArticleGoogle Scholar
  166. Shany, O. et al. Surprise-related activation in the nucleus accumbens interacts with music-induced pleasantness. Soc. Cogn. Affect. Neurosci.14, 459–470 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  167. Gold, B. P., Pearce, M. T., Mas-Herrero, E., Dagher, A. & Zatorre, R. J. Predictability and uncertainty in the pleasure of music: a reward for learning? J. Neurosci.39, 9397–9409 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  168. Swaminathan, S. & Schellenberg, E. G. Current emotion research in music psychology. Emot. Rev.7, 189–197 (2015). ArticleGoogle Scholar
  169. Madison, G. & Schiölde, G. Repeated listening increases the liking for music regardless of its complexity: implications for the appreciation and aesthetics of music. Front. Neurosci.11, 147 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  170. Corrigall, K. A. & Schellenberg, E. G. Liking music: genres, contextual factors, and individual differences. in Art, Aesthetics, and the Brain (Oxford Univ. Press, 2015).
  171. Zentner, A. Measuring the effect of file sharing on music purchases. J. Law Econ.49, 63–90 (2006). ArticleGoogle Scholar
  172. Rentfrow, P. J. & Gosling, S. D. The do re mi’s of everyday life: the structure and personality correlates of music preferences. J. Pers. Soc. Psychol.84, 1236–1256 (2003). ArticlePubMedGoogle Scholar
  173. Vuust, P. et al. Personality influences career choice: sensation seeking in professional musicians. Music. Educ. Res.12, 219–230 (2010). ArticleGoogle Scholar
  174. Rohrmeier, M. & Rebuschat, P. Implicit learning and acquisition of music. Top. Cogn. Sci.4, 525–553 (2012). ArticlePubMedGoogle Scholar
  175. Münthe, T. F., Altenmüller, E. & Jäncke, L. The musician’s brain as a model of neuroplasticity. Nat. Rev. Neurosci.3, 1–6 (2002). This review highlights how professional musicians represent an ideal model for investigating neuroplasticity. Google Scholar
  176. Habibi, A. et al. Childhood music training induces change in micro and macroscopic brain structure: results from a longitudinal study. Cereb. Cortex28, 4336–4347 (2018). ArticlePubMedGoogle Scholar
  177. Schlaug, G., Jancke, L., Huang, Y., Staiger, J. F. & Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia33, 1047–1055 (1995). ArticleCASPubMedGoogle Scholar
  178. Baer, L. H. et al. Regional cerebellar volumes are related to early musical training and finger tapping performance. Neuroimage109, 130–139 (2015). ArticleCASPubMedGoogle Scholar
  179. Kleber, B. et al. Voxel-based morphometry in opera singers: increased gray-matter volume in right somatosensory and auditory cortices. Neuroimage133, 477–483 (2016). ArticlePubMedGoogle Scholar
  180. Gaser, C. & Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci.23, 9240–9245 (2003). Using a morphometric technique, this study shows a grey matter volume difference in multiple brain regions between professional musicians and a matched control group of amateur musicians and non-musicians. ArticleCASPubMedPubMed CentralGoogle Scholar
  181. Sluming, V. et al. Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. Neuroimage17, 1613–1622 (2002). ArticlePubMedGoogle Scholar
  182. Palomar-García, M.-Á., Zatorre, R. J., Ventura-Campos, N., Bueichekú, E. & Ávila, C. Modulation of functional connectivity in auditory–motor networks in musicians compared with nonmusicians. Cereb. Cortex27, 2768–2778 (2017). PubMedGoogle Scholar
  183. Schneider, P. et al. Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat. Neurosci.5, 688–694 (2002). ArticleCASPubMedGoogle Scholar
  184. Bengtsson, S. L. et al. Extensive piano practicing has regionally specific effects on white matter development. Nat. Neurosci.8, 1148–1150 (2005). ArticleCASPubMedGoogle Scholar
  185. Zamorano, A. M., Cifre, I., Montoya, P., Riquelme, I. & Kleber, B. Insula-based networks in professional musicians: evidence for increased functional connectivity during resting state fMRI. Hum. Brain Mapp.38, 4834–4849 (2017). ArticlePubMedPubMed CentralGoogle Scholar
  186. Kraus, N. & Chandrasekaran, B. Music training for the development of auditory skills. Nat. Rev. Neurosci.11, 599–605 (2010). ArticleCASPubMedGoogle Scholar
  187. Koelsch, S., Schröger, E. & Tervaniemi, M. Superior pre-attentive auditory processing in musicians. Neuroreport10, 1309–1313 (1999). ArticleCASPubMedGoogle Scholar
  188. Münte, T. F., Kohlmetz, C., Nager, W. & Altenmüller, E. Superior auditory spatial tuning in conductors. Nature409, 580 (2001). ArticlePubMedGoogle Scholar
  189. Seppänen, M., Brattico, E. & Tervaniemi, M. Practice strategies of musicians modulate neural processing and the learning of sound-patterns. Neurobiol. Learn. Mem.87, 236–247 (2007). ArticlePubMedGoogle Scholar
  190. Guillot, A. et al. Functional neuroanatomical networks associated with expertise in motor imagery. Neuroimage41, 1471–1483 (2008). ArticlePubMedGoogle Scholar
  191. Bianco, R., Novembre, G., Keller, P. E., Villringer, A. & Sammler, D. Musical genre-dependent behavioural and EEG signatures of action planning. a comparison between classical and jazz pianists. Neuroimage169, 383–394 (2018). ArticleCASPubMedGoogle Scholar
  192. Vuust, P., Brattico, E., Seppänen, M., Näätänen, R. & Tervaniemi, M. Practiced musical style shapes auditory skills. Ann. N. Y. Acad. Sci.1252, 139–146 (2012). ArticlePubMedGoogle Scholar
  193. Bangert, M. & Altenmüller, E. O. Mapping perception to action in piano practice: a longitudinal DC-EEG study. BMC Neurosci.4, 26 (2003). ArticlePubMedPubMed CentralGoogle Scholar
  194. Li, Q. et al. Musical training induces functional and structural auditory-motor network plasticity in young adults. Hum. Brain Mapp.39, 2098–2110 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  195. Herholz, S. C., Coffey, E. B. J., Pantev, C. & Zatorre, R. J. Dissociation of neural networks for predisposition and for training-related plasticity in auditory-motor learning. Cereb. Cortex26, 3125–3134 (2016). ArticlePubMedGoogle Scholar
  196. Putkinen, V., Tervaniemi, M. & Huotilainen, M. Musical playschool activities are linked to faster auditory development during preschool-age: a longitudinal ERP study. Sci. Rep.9, 11310–11310 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
  197. Putkinen, V., Tervaniemi, M., Saarikivi, K., Ojala, P. & Huotilainen, M. Enhanced development of auditory change detection in musically trained school-aged children: a longitudinal event-related potential study. Dev. Sci.17, 282–297 (2014). ArticlePubMedGoogle Scholar
  198. Jentschke, S. & Koelsch, S. Musical training modulates the development of syntax processing in children. Neuroimage47, 735–744 (2009). ArticlePubMedGoogle Scholar
  199. Chobert, J., François, C., Velay, J. L. & Besson, M. Twelve months of active musical training in 8-to 10-year-old children enhances the preattentive processing of syllabic duration and voice onset time. Cereb. Cortex24, 956–967 (2014). ArticlePubMedGoogle Scholar
  200. Moreno, S. et al. Musical training influences linguistic abilities in 8-year-old children: more evidence for brain plasticity. Cereb. Cortex19, 712–723 (2009). ArticlePubMedGoogle Scholar
  201. Putkinen, V., Huotilainen, M. & Tervaniemi, M. Neural encoding of pitch direction is enhanced in musically trained children and is related to reading skills. Front. Psychol.10, 1475 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  202. Wong, P. C., Skoe, E., Russo, N. M., Dees, T. & Kraus, N. Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat. Neurosci.10, 420–422 (2007). ArticleCASPubMedPubMed CentralGoogle Scholar
  203. Virtala, P. & Partanen, E. Can very early music interventions promote at-risk infants’ development? Ann. N. Y. Acad. Sci.1423, 92–101 (2018). ArticleGoogle Scholar
  204. Flaugnacco, E. et al. Music training increases phonological awareness and reading skills in developmental dyslexia: a randomized control trial. PLoS ONE10, e0138715 (2015). ArticlePubMedPubMed CentralCASGoogle Scholar
  205. Fiveash, A. et al. A stimulus-brain coupling analysis of regular and irregular rhythms in adults with dyslexia and controls. Brain Cogn.140, 105531 (2020). ArticlePubMedGoogle Scholar
  206. Schellenberg, E. G. Correlation = causation? music training, psychology, and neuroscience. Psychol. Aesthet. Creat. Arts14, 475–480 (2019). ArticleGoogle Scholar
  207. Sala, G. & Gobet, F. Cognitive and academic benefits of music training with children: a multilevel meta-analysis. Mem. Cogn.48, 1429–1441 (2020). ArticleGoogle Scholar
  208. Saffran, J. R. Musical learning and language development. Ann. N. Y. Acad. Sci.999, 397–401 (2003). ArticlePubMedGoogle Scholar
  209. Friston, K. The free-energy principle: a rough guide to the brain? Trends Cogn. Sci.13, 293–301 (2009). ArticlePubMedGoogle Scholar
  210. Pearce, M. T. Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic enculturation. Ann. N. Y. Acad. Sci.1423, 378–395 (2018). ArticlePubMed CentralGoogle Scholar
  211. Novembre, G., Knoblich, G., Dunne, L. & Keller, P. E. Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation. Soc. Cogn. Affect. Neurosci.12, 662–670 (2017). ArticlePubMed CentralGoogle Scholar
  212. Konvalinka, I. et al. Frontal alpha oscillations distinguish leaders from followers: multivariate decoding of mutually interacting brains. Neuroimage94C, 79–88 (2014). ArticleGoogle Scholar
  213. Novembre, G., Mitsopoulos, Z. & Keller, P. E. Empathic perspective taking promotes interpersonal coordination through music. Sci. Rep.9, 12255 (2019). ArticlePubMedPubMed CentralCASGoogle Scholar
  214. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science269, 1880–1882 (1995). ArticleCASPubMedGoogle Scholar
  215. Patel, A. D. & Iversen, J. R. The evolutionary neuroscience of musical beat perception: the action simulation for auditory prediction (ASAP) hypothesis. Front. Syst. Neurosci.8, 57 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  216. Sebanz, N. & Knoblich, G. Prediction in joint action: what, when, and where. Top. Cogn. Sci.1, 353–367 (2009). ArticlePubMedGoogle Scholar
  217. Friston, K. J. & Frith, C. D. Active inference, communication and hermeneutics. Cortex68, 129–143 (2015). This article proposes a link between active inference, communication and hermeneutics. ArticlePubMedPubMed CentralGoogle Scholar
  218. Konvalinka, I., Vuust, P., Roepstorff, A. & Frith, C. D. Follow you, follow me: continuous mutual prediction and adaptation in joint tapping. Q. J. Exp. Psychol.63, 2220–2230 (2010). ArticleGoogle Scholar
  219. Wing, A. M. & Kristofferson, A. B. Response delays and the timing of discrete motor responses. Percept. Psychophys.14, 5–12 (1973). ArticleGoogle Scholar
  220. Repp, B. H. & Keller, P. E. Sensorimotor synchronization with adaptively timed sequences. Hum. Mov. Sci.27, 423–456 (2008). ArticlePubMedGoogle Scholar
  221. Vorberg, D. & Schulze, H.-H. Linear phase-correction in synchronization: predictions, parameter estimation, and simulations. J. Math. Psychol.46, 56–87 (2002). ArticleGoogle Scholar
  222. Novembre, G., Sammler, D. & Keller, P. E. Neural alpha oscillations index the balance between self-other integration and segregation in real-time joint action. Neuropsychologia89, 414–425 (2016). Using dual-EEG, the authors propose alpha oscillations as a candidate for regulating the balance between internal and external information in joint action. ArticlePubMedGoogle Scholar
  223. Keller, P. E., Knoblich, G. & Repp, B. H. Pianists duet better when they play with themselves: on the possible role of action simulation in synchronization. Conscious. Cogn.16, 102–111 (2007). ArticlePubMedGoogle Scholar
  224. Fairhurst, M. T., Janata, P. & Keller, P. E. Leading the follower: an fMRI investigation of dynamic cooperativity and leader-follower strategies in synchronization with an adaptive virtual partner. Neuroimage84, 688–697 (2014). ArticlePubMedGoogle Scholar
  225. Heggli, O. A., Konvalinka, I., Kringelbach, M. L. & Vuust, P. Musical interaction is influenced by underlying predictive models and musical expertise. Sci. Rep.9, 1–13 (2019). ArticleCASGoogle Scholar
  226. Heggli, O. A., Cabral, J., Konvalinka, I., Vuust, P. & Kringelbach, M. L. A Kuramoto model of self-other integration across interpersonal synchronization strategies. PLoS Comput. Biol.15, e1007422 (2019). ArticleCASPubMedPubMed CentralGoogle Scholar
  227. Heggli, O. A. et al. Transient brain networks underlying interpersonal strategies during synchronized action. Soc. Cogn. Affect. Neurosci.16, 19–30 (2020). This EEG study shows that differences in interpersonal synchronization are reflected by activity in a temporoparietal network. ArticlePubMed CentralGoogle Scholar
  228. Patel, A. D. Music, Language, and the Brain (Oxford Univ. Press, 2006).
  229. Molnar-Szakacs, I. & Overy, K. Music and mirror neurons: from motion to ‘e’motion. Soc. Cogn. Affect. Neurosci.1, 235–241 (2006). ArticlePubMedPubMed CentralGoogle Scholar
  230. Beaty, R. E., Benedek, M., Silvia, P. J. & Schacter, D. L. Creative cognition and brain network dynamics. Trends Cogn. Sci.20, 87–95 (2016). ArticlePubMedGoogle Scholar
  231. Limb, C. J. & Braun, A. R. Neural substrates of spontaneous musical performance: an FMRI study of jazz improvisation. PLoS ONE3, e1679 (2008). ArticlePubMedPubMed CentralCASGoogle Scholar
  232. Liu, S. et al. Neural correlates of lyrical improvisation: an FMRI study of freestyle rap. Sci. Rep.2, 834 (2012). ArticlePubMedPubMed CentralCASGoogle Scholar
  233. Rosen, D. S. et al. Dual-process contributions to creativity in jazz improvisations: an SPM-EEG study. Neuroimage213, 116632 (2020). ArticlePubMedGoogle Scholar
  234. Boasen, J., Takeshita, Y., Kuriki, S. & Yokosawa, K. Spectral-spatial differentiation of brain activity during mental imagery of improvisational music performance using MEG. Front. Hum. Neurosci.12, 156 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  235. Berkowitz, A. L. & Ansari, D. Generation of novel motor sequences: the neural correlates of musical improvisation. Neuroimage41, 535–543 (2008). ArticlePubMedGoogle Scholar
  236. Loui, P. Rapid and flexible creativity in musical improvisation: review and a model. Ann. N. Y. Acad. Sci.1423, 138–145 (2018). ArticleGoogle Scholar
  237. Beaty, R. E. The neuroscience of musical improvisation. Neurosci. Biobehav. Rev.51, 108–117 (2015). ArticlePubMedGoogle Scholar
  238. Vuust, P. & Kringelbach, M. L. Music improvisation: a challenge for empirical research. in Routledge Companion to Music Cognition (Routledge, 2017).
  239. Norgaard, M. Descriptions of improvisational thinking by artist-level jazz musicians. J. Res. Music. Educ.59, 109–127 (2011). ArticleGoogle Scholar
  240. Kringelbach, M. L. & Deco, G. Brain states and transitions: insights from computational neuroscience. Cell Rep.32, 108128 (2020). ArticleCASPubMedGoogle Scholar
  241. Deco, G. & Kringelbach, M. L. Hierarchy of information processing in the brain: a novel ‘intrinsic ignition’ framework. Neuron94, 961–968 (2017). ArticleCASPubMedGoogle Scholar
  242. Pinho, A. L., de Manzano, O., Fransson, P., Eriksson, H. & Ullen, F. Connecting to create: expertise in musical improvisation is associated with increased functional connectivity between premotor and prefrontal areas. J. Neurosci.34, 6156–6163 (2014). ArticleCASPubMedPubMed CentralGoogle Scholar
  243. Pinho, A. L., Ullen, F., Castelo-Branco, M., Fransson, P. & de Manzano, O. Addressing a paradox: dual strategies for creative performance in introspective and extrospective networks. Cereb. Cortex26, 3052–3063 (2016). ArticlePubMedGoogle Scholar
  244. de Manzano, O. & Ullen, F. Activation and connectivity patterns of the presupplementary and dorsal premotor areas during free improvisation of melodies and rhythms. Neuroimage63, 272–280 (2012). ArticlePubMedGoogle Scholar
  245. Beaty, R. E. et al. Robust prediction of individual creative ability from brain functional connectivity. Proc. Natl Acad. Sci. USA115, 1087–1092 (2018). ArticleCASPubMedPubMed CentralGoogle Scholar
  246. Daikoku, T. Entropy, uncertainty, and the depth of implicit knowledge on musical creativity: computational study of improvisation in melody and rhythm. Front. Comput. Neurosci.12, 97 (2018). ArticlePubMedPubMed CentralGoogle Scholar
  247. Belden, A. et al. Improvising at rest: differentiating jazz and classical music training with resting state functional connectivity. Neuroimage207, 116384 (2020). ArticlePubMedGoogle Scholar
  248. Arkin, C., Przysinda, E., Pfeifer, C. W., Zeng, T. & Loui, P. Gray matter correlates of creativity in musical improvisation. Front. Hum. Neurosci.13, 169 (2019). ArticlePubMedPubMed CentralGoogle Scholar
  249. Bashwiner, D. M., Wertz, C. J., Flores, R. A. & Jung, R. E. Musical creativity “revealed” in brain structure: interplay between motor, default mode, and limbic networks. Sci. Rep.6, 20482 (2016). ArticleCASPubMedPubMed CentralGoogle Scholar
  250. Przysinda, E., Zeng, T., Maves, K., Arkin, C. & Loui, P. Jazz musicians reveal role of expectancy in human creativity. Brain Cogn.119, 45–53 (2017). ArticlePubMedGoogle Scholar
  251. Large, E. W., Kim, J. C., Flaig, N. K., Bharucha, J. J. & Krumhansl, C. L. A neurodynamic account of musical tonality. Music. Percept.33, 319–331 (2016). ArticleGoogle Scholar
  252. Large, E. W. & Palmer, C. Perceiving temporal regularity in music. Cogn. Sci.26, 1–37 (2002). This article proposes an oscillator-based approach for the perception of temporal regularity in music. ArticleGoogle Scholar
  253. Cannon, J. J. & Patel, A. D. How beat perception co-opts motor neurophysiology. Trends Cogn. Sci.25, 137–150 (2020). The authors propose that cyclic time-keeping activity in the supplementary motor area, termed ‘proto-actions’, is organized by the dorsal striatum to support hierarchical metrical structures. ArticlePubMedGoogle Scholar
  254. Keller, P. E., Novembre, G. & Loehr, J. Musical ensemble performance: representing self, other and joint action outcomes. in Shared Representations: Sensorimotor Foundations of Social Life Cambridge Social Neuroscience (eds Cross, E. S. & Obhi, S. S.) 280-310 (Cambridge Univ. Press, 2016).
  255. Rao, R. P. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci.2, 79–87 (1999). ArticleCASPubMedGoogle Scholar
  256. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci.36, 181–204 (2013). ArticlePubMedGoogle Scholar
  257. Kahl, R. Selected Writings of Hermann Helmholtz (Wesleyan Univ. Press, 1878).
  258. Gregory, R. L. Perceptions as hypotheses. Philos. Trans. R. Soc. Lond. B Biol. Sci.290, 181–197 (1980). ArticleCASPubMedGoogle Scholar
  259. Gibson, J. J. The Ecological Approach to Visual Perception (Houghton Mifflin, 1979).
  260. Fuster, J. The Prefrontal Cortex Anatomy, Physiology and Neuropsychology of the Frontal Lobe (Lippincott-Raven, 1997).
  261. Neisser, U. Cognition and Reality: Principles and Implications of Cognitive Psychology (W H Freeman/Times Books/ Henry Holt & Co, 1976).
  262. Arbib, M. A. & Hesse, M. B. The Construction of Reality (Cambridge Univ. Press, 1986).
  263. Cisek, P. & Kalaska, J. F. Neural mechanisms for interacting with a world full of action choices. Annu. Rev. Neurosci.33, 269–298 (2010). ArticleCASPubMedGoogle Scholar
  264. Isomura, T., Parr, T. & Friston, K. Bayesian filtering with multiple internal models: toward a theory of social intelligence. Neural Comput.31, 2390–2431 (2019). ArticlePubMedGoogle Scholar
  265. Friston, K. & Frith, C. A duet for one. Conscious. Cogn.36, 390–405 (2015). ArticlePubMedPubMed CentralGoogle Scholar
  266. Hunt, B. R., Ott, E. & Yorke, J. A. Differentiable generalized synchronization of chaos. Phys. Rev. E55, 4029–4034 (1997). ArticleCASGoogle Scholar
  267. Ghazanfar, A. A. & Takahashi, D. Y. The evolution of speech: vision, rhythm, cooperation. Trends Cogn. Sci.18, 543–553 (2014). ArticlePubMedPubMed CentralGoogle Scholar
  268. Wilson, M. & Wilson, T. P. An oscillator model of the timing of turn-taking. Psychon. Bull. Rev.12, 957–968 (2005). ArticlePubMedGoogle Scholar

Acknowledgements

Funding was provided by The Danish National Research Foundation (DNRF117). The authors thank E. Altenmüller and D. Huron for comments on early versions of the manuscript.